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S U M M A R Y  
In this article an actuator disk with a time-dependent normal load and surrounded by a shroud is discussed. Its 
efficiency is calculated as a function of its dimensions and frequency. Numerical results are given. 

1. Introduction 

In 1950 Dickmann [1] wrote a very interesting phenomenological article on several kinds of 
unsteady propulsion, such as sculling propulsion by wings or by an oscillating piston in a 
cylinder which induces a periodic jet. In order to obtain insight in the action of these 
propellers he started with the nonstationary actuator disk and discussed several features of 
its efficiency. This model was elaborated upon mathematically by Schiele in his doctoral 
thesis [2] who used the numerical results of his analysis to discuss the efficiency of more 
general unsteady propellers. 

In this paper we give a partial extension of the work of Schiele. The question arises 
whether the flow induced by an unsteady force action can be smoothed by introducing 
passive impermeable constraints in the fluid. Then instead of a strongly periodic jet behind 
the propeller a more constant jet can occur which has the same momentum at the cost of 
lower kinetic energy losses. Such a device, for instance, is the well-known cylindrical shroud 
or duct of finite length, used for surrounding ship propellers. By the favourable interaction 
of the vorticity which leaves the trailing edge of the shroud with the vorticity shed by the 
propeller the kinetic energy left behind is diminished and the efficiency of the propulsion 
unit is increased. 

In this article the nonstationary actuator disk is surrounded by a shroud which also sheds 
vorticity from its trailing edge. When the gap between disk and shroud is sufficiently small 
and the shroud is sufficiently long its effect, as can be expected, is appreciable. The main 
reason is that a relatively large amount of fluid is "enclosed" by the shroud, which by its 
inertia smoothes considerably the periodic force action of the disk. Hence even when the 
forces at the disk are heavily fluctuating the efficiency of disk and shroud together can be 
high. In fact large forces induced within the shroud at its walls counteract the fluctuating 
part of the forces of the disk. This means that even in such a case of large fluctuating forces a 
linear theory is applicable because the disturbance velocities are small. 

The efficiency of the actuator disk with time-dependent normal loading surrounded by a 
shroud is calculated in this article for several values of the width of the gap between disk and 
shroud and for several values of the length of the shroud. These results show that roughly 
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252 L. K l a r e n  

speaking already for a shroud of a length of a quarter of the length of the disk diameter and 
for zero gap a remarkable gain in efficiency can be obtained which of course still depends on 
the frequency and the amplitude of the external force. 

2. Formulation of the problem 

We consider a cartesian coordinate system (x, y, z) in an unbounded, inviscid and 
incompressible fluid of density p. In the positive x-direction there is a homogeneous flow of 
magnitude V. The theory is linear; hence the disturbance velocities are assumed to be small 
of O(e) where e is a small parameter. 

The simple propeller model we will use consists of an external force field, 

F ( x ,  y,  z ,  t) = (F  + A F e i ~ t ) 6 ( X ) e x ,  y2 + z 2 ~ b~ 

F ( x ,  y ,  z, t)  = O, y2 + z 2 > b 2 
(2.1) 

per unit of volume, where F and A F  are constants of O(e), e x is the unit vector in the x- 
direction, 3(x) the delta function of Dirac and b 1 a positive constant. This model is called a 
nonstationary actuator disk. 

We also consider the presence of a rigid and impermeable circle cylinder of finite length l 
(shroud or duct) which surrounds the disk. It  has the same axis as the disk and its radius is 

b 2 with b 2 t> b I (Figure 2.1). This shroud extends from x = x t (leading edge) to x = x t 
(trailing edge) with l = x t - x r 

The linearized equation of motion of the fluid is 

dv dv 1 
- -  + V - -  = - -  (F(x ,  y,  z ,  t) - grad p), (2.2) 
~t ~x p 

v being the disturbance velocity and p the pressure. Also we have the equation of continuity 

div v = 0. (2.3) 

First, we consider the free vorticity shed by the actuator disk. Applying the rotation 
operator to both sides of (2.2) we get 

L Y1 

" '[  . . . . . . . .  ' 2 
7< 

Figure 2.1. Actuator disk and shroud (partially removed) placed in a parallel flow, 1 = x, - x r 
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Figure 2.2. Cross section of the disk; testcontours C 1 and C2floating with the main stream. 

+ V rot v = - -  rot F. (2.4) 
P 

It is obvious from the axial symmetry of the problem that the free vorticity will have a 

component  in the U-direction only (Figure 2.1). That 's  why we use testcontours C 1 and C 2 

in the x, y-plane, floating downstream with the velocity V and going to pass the disk (Figure 

2.2). The contours have small length L and width e 1, e, 1 ~ L. In position I the circulations of 

C a and C 2 are zero. In position II it follows from (2.4) and (2.1) for the circulation Fc,(t ) 
along contour C 1 that 

~i-Fc,(t)=-df v ' e~dx=--  F.exdx=O, 
1 P JC~ 

(2.5) 

and analogously for the circulation Fc2(t ) along C2, 

d __1 (F + AFei'°z). (2.6) dt rc2(t)= p 

At the instant the contours C a and C 2 a r e  just downstream from the disk their circulations 
have become, at least if L is sufficiently small, 

1 (F + d F e  i'°~) L rc,(t) = o, re / t )= P -¢-. (2.7) 

Once the contours have passed the disk there is no change in circulation any more (position 
III,  Figure 2.2). This means that per unit of length in the x-direction the strength of the free 
vorticity left behind becomes 

Fc2 _ (F + zlFe ''°') (2.8) 
7d-- L pV 

where 7a is reckoned positive when it is connected with a right-hand screw to the orientation 
of contours of type C 2. The same definition of positiveness will be assumed in Section 4 for 
the circular vorticity on the shroud and behind it. 
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This configuration of ring vortices on the semi-infinite cylinder surface r = bp x > 0 
downstream of the edge of the disk (Figure 2.2) will describe the velocity field induced by the 
external force field F. It induces a disturbance velocity with non-zero components normal to 
the shroud (Figure 2.1). We assume a vortex distribution on the shroud to compensate this 
normal velocity. As a consequence of the time dependence of the disturbance velocity this 
vortex distribution will be a function of time too; hence free vorticity will be shed from the 
trailing edge of the shroud. The interaction of free vorticity behind shroud and disk will 
influence the efficiency of the system. 

In the next section we first calculate the kinetic energy per unit of length in the x-direction 
of the fluid far downstream when the shroud is absent. 

3. The efficiency of  the nonstationary actuator disk without shroud (1 = 0) 

It is seen from (2.8) that the free circular vorticity Ye downstream from the disk at r = b 1 
(Figure 2.2) has the density 

1 6o 
~/d(X, t) = _--77, (F +/ IFe i { ' ° ' -u '~ ) ) ,  1'1 = V p v  

(3.1) 

We consider the value of the kinetic energy lost per unit of length in the x-direction far 
behind the disk. Speaking in future about this kinetic energy we think of a disk moving with 
a velocity V in the negative x-direction in a fluid which is at rest upstream at infinity. Then 
the shed free vorticity is independent of time and we put t = 0. We use the same notation x 
for the coordinate along the axis of axial symmetry, which will not cause misunderstanding. 
When we drop one argument in a function we mean that we have removed the factor e i°'t. 

Defining in (3.1) ys (steady vorticity) and 71 (unsteady vorticity at r = bl) for x >/0 by 

F AF i(tot- ix) 
~A(x) = p V '  ~A(x, t) = --pV e ~ , (3.2) 

we can write at t = 0 

= + (3.3) 

Hence Yd is a periodic function ofx  with period 2zc//~ v We first calculate the kinetic energy in 
a region G, defined by 

A ~< x ~< B, 0 ~< r, (3.4) 

for A sufficiently large and B = A + 2n//q. By the axial symmetry the velocity field of the 
disk alone, v d, is a function of x and r only. We split the velocity field v d into two parts, 

Va(X , r) = v~(x, r) + Vl(X , r), (3.5) 

where v~ and v 1 are the velocity fields induced by the vorticities 7s and Yl respectively. 
The velocity field v~ far behind the disk is well known, 
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F 
- - -  r<~ bl, 

vs(x, r) = p V  ex' (3.6) 

0, r > b  1. 

For  x sufficiently large the velocity field v 1 is a periodic function of x, 

r l (x  + 2n//tl, r) = vl(x  , r). (3.7) 

The kinetic energy E in G, belonging to the total velocity field v = vs + v 1, has the value 

E : ½ p f f f [ v l : d r .  (3.8, 
a 

Integrating over a length 2n/lz~ in the x-direction it can be seen from (3.7) that the 
contr ibut ion of product  terms of v s and v I in Iv12 vanishes. This enables us to calculate in G 

the kinetic energies E~ and E~ of the fields vs and v~ separately. Simply adding them we get 

E = E~ + E~. (3.9) 

By (3.6) we see that  the energy E~ in G is 

1 2 2n / F "~2 ~.2 b2 F2 

The energy E~ belonging to v 1 can be written as 

$1 

(3.10) 

(3.11) 

where Re means real part,  ~0~(~0~-) is the potential  of the complex velocity field for r ~ b 1 
(r T bl ), n is the unit normal  on the boundary  S~, pointing in the direction of increasing r and 

$1: A ~ < x ~ < B ,  r = b  1. (3.12) 

In arriving at (3.11) we used the periodicity of the velocity field. For  the jump  in the 
potential  across S~ we can take 

~0~(x) - ~0~-(x) = 71(~)d~ - ~1 71(x) + c1' (3.13) 

where x o and c 1 are constants, independent  of x. The normal  derivative O~Ol/Sn is 
independent  of gJ (Figure 2.1), hence we put  ~ = 0 and by the Biot -Savar t  theorem we have 

O~o 1 (x, b l ) =  x R, er) 
On 0o R3 "-bldOd~ = ipT(p)71(x), (3.14) 
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where e 0 and e r are the unit vectors in 0- and y-direction, in Cartesian coordinates, 

R = ( x  - ~, bl(1 - cos 0), - b  1 sin 0), (3.15) 

R is the length of R and T~)  the dimensionless number 

-xfi f£ qsinllrlcosOdOdy ~ob~ 
T ~ ) = ~ f  { - ~ i ~ c ~ s ~ } -  l ,  l u = u , b , =  V (3.16) 

Substitution of (3.13) and (3.14) into (3.11) yields 

E, = 17 b~ (AF) 2 
U, PV 2 T(tz). (3.17) 

Per unit of length in the x-direction we find for the values of these energies, 

F 2 ( A F )  2 
E~ ' ~ E l ~ = = utb~ T~). (3.18) ~tbl  pV 2, '-pV 2 

The useful work W delivered by the disk per unit of length in the x-direction amounts to 

W = nb2F. (3.19) 

Hence the efficiency r/1 will be 

r h -  W + E ~ + E  l = 1 +  + T~)  (3.20) 

Because the theory is linearized F = O(e); hence 

w - + r ~ . )  . ( 3 . 2 1 )  

L. Klaren 

T IL t 
. 5 -  

L -  

, 3 -  

. 2 -  

. 1 -  

I I t 

Figure 3.1. T ~ )  as a function of/~ = ¢obl/V. 
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In Figure 3.1 we have drawn the graph of the dimensionless function T~)  which is one of the 
quantities which determine the efficiency r/l, (3.20) or (3.21). 

When/~ ~ 0, 7a(x) remains periodic, although its period 2z~//z 1 becomes very large. With 
F = zlF, the quantity T(#) expresses the ratio of E] and E~. Therefore we find T(~) -- E~/E~ 1 

0.5 when # ~ 0. When/~ ~ ~ the period of 7~(x) tends to zero. In those points of G that 
are at a distance from the cylinder r = b~ which is large with respect to the length of such a 
small period, the contributions to the velocity field due to positive and negative parts of 
7~(x) almost cancel. This explains why T ~ ) ~  0 when # ~ ~ .  One can easily show that 
dT/d# ~ 0 when # ~ 0, which also is confirmed by Figure 3.1. It follows from (3.20) or (3.21) 
that when AF/F  and F/ (2pV  2) are kept constant the efficiency increases with increasing 
values o f#  = ogbl/V. 

In the next section we shall see how the presence of the shroud (Figure 2.1) affects the 
efficiency of the system. 

4. The actuator disk surrounded by the shroud (! ~= 0) 

We now assume a shroud of length l ~ 0 to be present (Figure 2.1). On and behind it we 
have a vortex distribution to compensate for the normal components of the velocity induced 
by the free vorticity 7d(X, t), (3.1). Being interested in the influence of the shroud on the 
efficiency of the system we only need (because our theory is linear) to consider the vorticity 
F on it due to the time-dependent part of the vorticity 7d(X, t). Per unit of length in the x- 
direction (r = b2) F is written as 

F(x, t) = F(x)e  i'°t, x I <~ x <~ x, (4.1) 

with F(x)  =/~l)(x)  + i/'(2)(x), /"(1) and/--,(2) real. Consequently at the trailing edge (x = xt) 
of the shroud free circular vorticity 72(x, t) will be shed off with density 

, x t ) -  1 ~ xt ico ei~, , F(¢)d(  (4.2) 
Y2( ,, V Ot F(¢, t )d(  = - V -  

l 1 

per unit of length in the x-direction. First we consider the case of a gap b 2 - b 1 > 0. By the 
Kutta condition we find that this shed vorticity at the trailing edge equals F(x,, t), 

F ( x , ) -  ico f i '  V F(~)d~, b2 > b r (4.3) 
l 

Hence 

72(x, t) = F(xt)e i[°'t-u~(x-xt)l, x >1 xt, b 2 > b r (4.4) 

To find 72(xt) we have, compensating for the induced normal velocity at points x = x +, 
r = b 2 on the shroud, to solve together with the equation (4.3) the integral equation for F(x), 

~x :' ~2~ (co x g__~, e~) 
F(~) b2dOd~ + 

, Jo Ra~ 
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+ fi~ f~" ~'2(¢) (e° 

(.® t-2. 
"at- J0 J0 '1(~) (e° 

X g2,  ey) b2dOd~ 
R~ 

x R3, er ) bldOd~ = 0, 
R~ 

(4.5) 

where R 2 and R a are given in Cartesian coordinates by 

R 2 =  (x + - ~, b2(1 - cos 0), - b  2 sin 0), 

R 3 = (x + - ~, b 2 - b 1 cos 0, - b  I sin 0), 
(4.6) 

and R~ = IRgt, j = 2, 3. The first term on the left hand side of (4.5) expresses the normal 
velocity induced on the shroud by the vorticity F(x, t) itself. Therefore we have to take the 
Cauchy principal value. 

To calculate the lost kinetic energy E far downstream we again consider the region G 
(3.4). Also we can again make the addition 

E = E~ + E 2, 

where E~ has the same meaning as before and E 2 is the kinetic energy belonging to the two 
vortex layers Yl and Y2. Analogous to (3.11) the value of E 2 is 

E2 = ½P f f Re(~o- - dP + )Re(~n~ )da + ½P f f Re(dP- - dP + )Re(~n2 ) da, 
S~ S2 

(4.8) 

where ~b + (~b-) is the velocity potential of the periodic part of the velocity field for r J, bg 
(r T bg), nj the unit normal on the boundary St, pointing in the direction of increasing r and 

S2: A<~x<<,B, r=bg, j=l ,2.  (4.9) 

For the jumps in the potential across Sj we can take similarly as before 

- i  
O+(x) - ¢-(x)l,=b, -- yl(x) + Cl, 

/tl 

- i  
¢ + ( x )  - ¢- (x ) l ,=~  = ~ [  ~ (x )  + c~, 

(4.10) 

where c 1 and ¢2 are constants independent of x. The normal derivative Oc~/8nj can be shown 
to be 

O~b _ i/*{I,(1,/a))q(x) + bla(b,/.t))'2(x)}, 
8n~ 

- ilt{I=(b, lt)Tx(x) + bll(b, fl))'2(X)}, 
¢~n 2 

(4.11) 

with b, 11 and 12 dimensionless numbers given by 
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1 l(r, It) = nit {~/2 + 2z2(1 + cos 0)} ~' (4.12) 

-lfoff rlsinit t lc°sOdOdtl 
I2(b'P) = up {t/2 + 1 + b 2 + 2bcos0} ~' b = b2/b r (4.13) 

From the definitions (3.16), (4.12) and (4.13) we see that 11 (1, It) =/2(1, p) = T(p). Thus the 
value of this part of the lost kinetic energy per unit of length in the x-direction is: 

(AF) 2 . . . . .  
E~ = ½nb~ ~ T -  L~I (1, #)  + f12b211 (b, lt) + 2fib cos (Plx, + a)I2(b, It)I, (4.14) 

where ~ and fl are the dimensionless numbers 

= arctan(F(2)(x,)/l"(X)(x,)), (4.15) 

fl = sign (/~l)(x,))x/{/~l)(x,)}2 + {I~2)(x,)}2/[(AF)/pV]. (4.16) 

Now the efficiency t/2 of the nonstationary actuator disk in presence of the shroud is 

W 
t/2 = W +  E~ + E~" (4.17) 

Both E~ (3.18) and E~ are the lost kinetic energies due to the unsteady part ofF(x, y, z, t) in 
absence and presence of the shroud respectively. Let us call them the unsteady energies. 
Then (E~ - E1)/E~ 1 - -  1 1 = E2/E 1 is the fraction of E~ regained by the shroud. The ratio 

1 1 E2/E ~, the fraction of E l that remains in the fluid, depends on four dimensionless 
parameters: 

1 1 ¢ i E2/E 1 = f (~ ,  b, l ,  x,), b = b2/b 1 > 1 (4.18) 

where l' and x; are given by 

t l' = l/bp x t = x j b  r (4.19) 

Using (4.18) and (3.18) we can write q2 (4.17) as 

( 2 @ V 2  [ ( ~ ) 2  ~)1}-1 q 2 =  1 +  1 +  - -  T ( i t ) f ~ , b , l ' , x  (4.20) 

or, because the theory is linear 

t12 1 - d 2 e ' d 2  2 ~ I  1 ( 7 )  2 1 = = + - -  T ( i t ) f~ ,  b, l', x;) . (4.21) 
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5. The  l imit  case  b 2 - b I = 0 ( l  4= 0) 

In this section we consider the situation in which there is no gap between shroud and disk, 
hence when b 2 - b~ = 0. It turns out that in this case a change of the position of the actuator 
disk within the duct does not affect the velocity field induced by the system. This follows 
from the arguments given in [3] with respect to the deformation of the area of an actuator 
disk which has a time-dependent loading perpendicular to its surface. This loading has to be 
independent of the position on the surface of the disk. Both conditions are satisfied in our 
model. We replace the actuator disk of which a cross section with the x, y-plane is given in 
Figure 5.1a, by an actuator surface of which the shape is drawn in Figure 5.lb. 

In both cases the induced velocity fields are equal. When now we consider the limit 
b 2 ~ bl, the cylindrical part of the actuator surface in Figure 5.1b, coincides with the duct. 
The duct annihilates the velocities induced by this cylindrical part; hence only an actuator 

disk inside the duct remains active and it induces the same velocities as the actuator disk at 
x = 0 in Figure 5.1a. This is confirmed numerically in Figure 6.1 where the case of a small 

gap b2/b I = 1.05 is considered. 
This property is useful for numerical reasons. It enables us to put in the c a s e  b 2 - b 1 = 0 

the trailing edge of the shroud at x = 0 (x, = 0). So we do not have to deal with the 
numerical problem to determine the vorticity F on the shroud having a jump at the position 
of the disk. Here F represents again the vorticity on the duct caused by the unsteady part of 
the force field. The Kutta condition at the trailing edge for the unsteady part of the vorticity 
can be written in this case as 

F (0 )=y2(0 )+71(0 ) ,  b 2 - b 1 = 0 .  (5.1) 

Hence for 72(x, t) we have 

72(x, t) = (F(0) - )q(0))eit°'t-"lxl; x >/0, r = b 2 = b 1. (5.2) 

Substituting this into (4.5) we get the equation 

F(~) (% x R2, er) dOd~ + F(0)e-i , ,e (% x R2, er) dOd~ = 0. (5.3) 

v 
n 

xe 
V 

D 

y~  

<t=O 

a .  

Figure  5.1. Defo rma t ion  of an ac tua to r  disk. 
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Equation (5.3) has to be solved, together with the equation that follows from (4.2) and (5.1), 
i.e. 

v r(Od  = r ( 0 )  - ( 5 . 4 )  
l 

The total vorticity behind shroud and disk is 

F(0)e it'°'-~'x~, x >/0, r = b z = b, .  (5.5) 

Analogous to (3.18) we can write for the value of the kinetic energy per unit of length in the 
x-direction 

E~ = ½P~rb2F2(O)T(lt), b = 1. (5.6) 

The ratio of E~ and E~ (the energies left downstream in presence and in absence of the 
shroud respectively) now depends on two dimensionless parameters only, 

1 1 E2/E  1 = g~,  1'), b = 1, x~ ~< 0 ~< x, (5.7) 

The efficiency t/2, in the case x z ~< 0 ~< xt, again follows from (4.20) or (4.21) where we have 
to replace f(u, b, l', x~) by 9(/2, l') = f ( # ,  1, l', x~). 

6. Numerical results 

We first recapitulate the meaning of the dimensionless parameters used in Figures 6.1-6.4: 
lu = ¢obl/V, b = b2/b 1, l' = l /bl ,  x~ = x J b  r For some of the parameters with dimension we 
refer to Figure 2.1. 

Figures 6.1-614 indicate in which way the quantities f (4.18) and g (5.7) depend on their 
parameters. As expected we observe from Figure 6.1 that as long as the shroud is far ahead 
of the disk nearly nothing of the lost kinetic energy E~ is regained ( f  tends to one). When it is 
placed far downstream from the disk it tends to its limit value when it encloses the two sided 
infinite vortex layer (the horizontal dotted lines drawn in Figure 6.1). We see that even for 

ft~,b,l,×~) I 

.L 

b=l.2 

b=1.05 

) I 
-,.o -.'s o .£ ,.s 

Figure 6.1. f as a function of the posit ion of the trailing edge; l' = 1 and/1 = 2. The disk is at the origin; 
- -  calculated values, - - -  asymptotic  values. 
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f ( J..I., b,1,0,5) l 

1.0 

Figure 6.2. 

.6 

.t. 

. 2  ~ 

0 

~ I.t= 6 
3 

IJ. 1 

I I I 
1.05 1.1 1.15 b .  

f as a function of the gap width. 

the given values of b in Figure 6.1 the value f is almost independent of the position of the 
shroud in case x~ ~< 0 ~< x~. 

Figure 6.2 shows that when we vary b only the fraction f of the unsteady energy E~ that 
remains increases with increasing values of b. This is a logical consequence of the decreasing 
interaction of disk and shroud when the gap b 2 - b 1 becomes larger. 

In Figure 6.3 we see that for a fixed value of b there is a certain value of p for which 
relatively most of the lost kinetic energy is regained by the duct; the shroud is working 
optimal. To this we remark the following: starting at p = 0 we find that for increasing p the 
amplitude IF(x,)l of 72 (4.4) becomes larger and hence the interaction between the vortex 
layers is improved. After a certain value of p (it depends on b) this interaction diminishes 
because the period of the shed vorticity becomes smaller. Then the distance at which the 
influence of a sheet can be perceived becomes smaller, hence its favourable interaction with 
the other sheet becomes less. 

A graph of g(/t, l') is given in Figure 6.4 (b = 1, x t <<. 0 <~ xt). When p ~ 0 the length of the 
period of 71 tends to infinity. The influence of 7~ on the shroud for small values of/~ tends to 
the influence of a vortex sheet of constant strength in which case no vorticity is shed by the 
duct. Hence the duct is not able to regain a part of the energy E l, so g~ ,  l') ~ 1 for/~ --, 0 
(l' fixed). The longer the shroud, the better it is able to shed the vorticity 72 needed to 
compensate the vorticity 71 behind the edge of the disk. This is numerically confirmed by 
Figure 6.4 where it is seen that for increasing values of l' the value of g becomes smaller. 

f(O,,b,l,O.S) r 
1.0 

.8 

.6 

.l. 

.2 

b=1.1 

b=l .0L 

b=1.02 

I I I I [ I I I  

I 2 3 t, 5 6 r - .  

Figure 6.3. f as a function of/*. 
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9(p.,~') l 
1 0 -  

1'--0.5 
/ ' -  ~ 

0 1 2 3 4 5 6 - 

Figure 6.4. g as a function of/t for different values of the length of the shroud. 
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